Civil Engineering

Objectives

- Define *civil engineering*.
- Describe structural forces, loads, and components.
- Identify different types of bridges.
- Understand the structure of a skyscraper.
- Describe the purpose of land surveying.

Civil Engineering

- Build safe facilities to meet societal needs
- Public works projects
 - Roads, bridges, dams, municipal water systems
- Subfields include structural, water resources, transportation, environmental, construction, geomatics engineering

Professional Aspects

- Bachelor's degree required
- Associate's degrees for technicians
- American Society of Civil Engineers
- Also International Association for Bridge and Structural Engineers (IABSE), Institute of Transportation Engineers (ITE), American Planning Association (APA)

Civil Engineering Principles

- Covers large base of knowledge
- All civil engineers must understand structures

rkriminger/Shutterstock.com

Structures

- Arrangement of parts built to remain stable while withstanding forces
- Structural loads
- Structural forces
- Structural components
- Structural materials
- Structural analysis

Action Sports Photography/Shutterstock.com

Structural Loads

- Structures transmit load from structure to ground
- Static loads, dynamic loads
- Equilibrium
 - Oppose external forces
 - Transfer load throughout structure

TFoxFoto/Shutterstock.com

Structural Forces

Goodheart-Willcox Publisher

Copyright Goodheart-Willcox Co., Inc. May not be posted to a publicly accessible website.

Structural Components

- Beams
 - Floor joist
- Columns
- Braces
 - Struts
 - Ties
- Joints

3drenderings/Shutterstock.com

Ties and Struts

Goodheart-Willcox Publisher

Copyright Goodheart-Willcox Co., Inc. May not be posted to a publicly accessible website.

Structural Materials

- Stone
- Bricks
- Wood
- Concrete
- Steel
- Reinforced concrete
- Carbon fiber

 All materials have advantages, disadvantages based on properties

Structural Analysis

- Responsibility of structural engineer
- Ensures structure has sufficient strength
- Ensures structure is as efficient as possible
 Makes best use of materials
- Incorporates physics, especially mechanics
 - Statics
 - Dynamics

Design

Civil Engineering Software

- Field specific
 - Planning
 - Drawing
 - Organization
 - Simulation
- Typically includes symbols

Truss Structural Analysis

- Simplest truss is triangular
- Structural members pinned together at joints
- Truss analysis
 - Begins with free body diagram
 - Determine structural stability of truss
 - Calculate reactions, internal forces
 - Complex calculations done by computer software

Free Body Diagram

- Structural members, joints
- Supports
- Loads or forces applied

Goodheart-Willcox Publisher

Stability Formula

• 2*j* = *m* + 3

Goodheart-Willcox Publisher

Reactions and Internal Forces

Goodheart-Willcox Publisher

Copyright Goodheart-Willcox Co., Inc. May not be posted to a publicly accessible website.

Civil Engineering Applications

- Bridges
- Skyscrapers
- Geomatics
 engineering

dvoevnore/Shutterstock.com

Bridges

- Design considerations
 - Length of span
 - Type of foundation
 - Environment
 - Available materials
- Basic components
 - Piers
 - Abutments
 - Roadway

Goodheart-Willcox Publisher

Bridge Components

Goodheart-Willcox Publisher

Copyright Goodheart-Willcox Co., Inc. May not be posted to a publicly accessible website.

Beam Bridges

• Span short distances

StockCube/Shutterstock.com

Gary Fowler/Shutterstock.com

Beam Bridge

Truss Bridge

Alexeye30/Shutterstock.com

Copyright Goodheart-Willcox Co., Inc. May not be posted to a publicly accessible website.

Arch Bridges

- Rely on arch strength, rigidity
 - Structural members in compression
 - Distribute load to abutments
- Arch can support deck from above or below

Dan Costa/Shutterstock.com

Suspension Bridges

- Main section similar to inverted arch bridge
- Use tension forces
- Main components
 - Towers
 - Main cables
 - Anchorages

Specialty Bridges

- Combination bridges
- Movable bridges

TheresaSc/Shutterstock.com

Skyscrapers

- Structural frame (skeleton)
 - Withstands building dead load
 - Attached to footings, piers extend deep into earth
- Outer surface does not carry weight
- Central core
 - Helps resist wind
 - More resistant to earthquakes
 - Contains elevator shafts, mechanical systems

Skyscraper Components

Goodheart-Willcox Publisher

Copyright Goodheart-Willcox Co., Inc. May not be posted to a publicly accessible website.

Other Structural Civil Engineering Applications

- Dams
- Tunnels
- Geomatics engineering

Andy Z./Shutterstock.com

Geomatics Engineering

- Determine location of objects on earth
- Engineers create land, resource maps
 Conduct boundary, other land surveys
- Design, use GIS

Land Surveying

- Measurements used to determine size, shape of piece of land
- Measure distance, angles
- Total station instrument
 - Includes electronic distance meter (EDM)
 - Total robotic station

Robert Adrian Hillman/Shutterstock.com

Tools

Surveying Bearings

- Bearings express line directions
- Quadrant system
 North, south, east, west
- Angles found, measured from northsouth axis

Goodheart-Willcox Publisher

Civil Engineering in Action

- Civil engineers work in teams
 - Ethics
- US Army Corps of Engineers
 - Military works, government projects
 - Civil works projects
 - Used in combat

Frontpage/Shutterstock.com